Megger.

Introduction

Ratio Testing Transformers under Construction

Transformer equipment manufacturers (OEMs) have a critical need to measure true ratio, as they must confirm proper manufacture of their transformers during construction and final assembly. Improper construction has consequences of higher cost, late delivery, and poor quality. The ability of a ratio instrument to be used for all steps involved makes it a practical value to OEMs because only one instrument is purchased and used throughout each stage. Only the most reliable and accurate instruments make it to the factory floor.

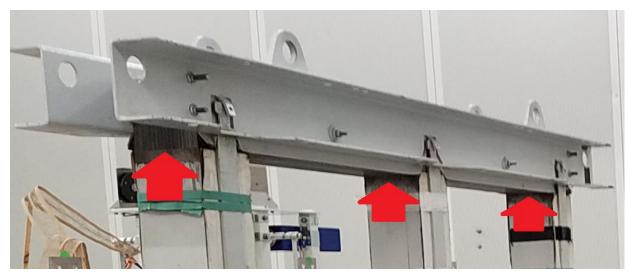
Winding stack under construction re used: Art Mandigo Winding Service

Megger Valley Forge Corporate Centre 2621 Van Buren Avenue Norristown PA 19403, United States

Testing Winding Stacks (incomplete transformers)

Problem **1998**

When an individual winding stack is built, it is often tested on a universal test core prior to placing the winding stacks on the final core. The ratio measurements during this testing validate proper winding turns. The universal test core is critical for preliminary ratio testing of a winding during construction, but it produces ratio errors due to


- 1) reluctance in the flux path at the butt joint
- 2) a wide air gap between the universal test core and the winding

With poor coupling and high magnetic reluctance, the ability to measure ratio within the required +/-0.5% of nameplate ratio becomes difficult and is not reflective of the final ratio measurements.

TTRU3 Application Note

Megger.

Factory Ratio Testing of Power Transformer

Universal test core with a "butt" joint High reluctance and a poor flux path - Increased ratio error

Universal test core with a large air gap

Reduces magnetic coupling, resulting in higher flux leakage - increased ratio error

Megger Valley Forge Corporate Centre 2621 Van Buren Avenue Norristown PA 19403, United States

Solution

To overcome ratio measurement problems, OEMs use instruments with higher test voltages on the primary winding. This reduces the errors due to voltage dependence recorded at lower test voltages. A higher test voltage (single phase, three phase switched) improves ratio results, but comes with higher purchase price, more weight and is less safe than lower test voltage units.

Megger

An alternate method to resolving high measurement errors is an instrument which steps up test voltage by exciting the secondary winding. This method resolves high measurement errors seen when traditional step down method deliver poor results. The TTRU3 uses a true 3Ø step up ratio method where a calculated input AC voltage is applied to the secondary winding which results in an induced voltage up to 250V on the primary winding.

Testing from the low side provides a number of benefits, including:

- Overcomes low impedance issues when applying test voltage from the high side. High impedance may result in voltage dependence issues.
- Injects test voltage to the low side providing better magnetic coupling to the core due to a smaller air gap compared to high side injection, which improves results
- Applies all 3 phases of test voltage simultaneously reducing the load effects of delta winding when tested singled phase

The TTRU3 delivers results closest to nameplate ratio, even when test voltage is lower than traditional ratio instruments.

Megger Valley Forge Corporate Centre 2621 Van Buren Avenue Norristown PA 19403, United States

Megger.

Dyn5 3Ø

	Nar	neplate	Voltage	Megger TTRU3 – 3 Phase Simultaneous -235V									
Тар	H∨	LV	Calculated V Ratio	Phase A V Ratio % Error		Phase B ∀ Ratio	% Error	Phase C V Ratio	% Error				
1	16538	400	71.61164	71.59276	-0.026%	71.61666	0.007%	71.60020	-0.016%				
2	16144	400	69.90557	69.89067	-0.021%	69.91301	0.011%	69.89673	-0.013%				
3	15750	400	68.1995	68.18685	-0.019%	68.20781	0.012%	68.19274	-0.010%				
4	15356	400	66.49343	66.48303	-0.016%	66.50399	0.016%	66.48840	-0.008%				
5	14962	400	64.78736	64.77973	-0.012%	64.79913	0.018%	64.78441	-0.005%				

Expected results using an accurate ratiometer on a universal core

Tee Dee		Rated	Voltage [V]	Decigo Datio	м	easured Ra	Ratio Deviation			
1	ap Pos	HV	LV	 Design Ratio 	Phase A	Phase B	Phase C	Phase A	Phase B	
V	5	6615	1902	3.478	3.480	3.480		0.060		
V	2.5	6458	1902	3.395	3.403	3.402		0.225	0.195	
V	0	6300	1902	3.312	3.324	3.327		0.353	0.444	
1	-2.5			3.229	3.246	3.243		0.519	0.426	
1	✓ -5	5985	1902	3.147	3.167	3.164		0.646	0.550	
					67 V	250V				

Poor TTR performance on a universal core

Is the winding the issue, or the instrument???

In this case it is the instrument

Megger Valley Forge Corporate Centre 2621 Van Buren Avenue Norristown PA 19403, United States

Megger.

Assembly Test

Problem

Once a core and windings are assembled a series of tests are conducted to ensure the transformer is mechanically sound and built to specifications. Whether large or small, most transformers undergo this testing prior to solid epoxy or liquid insulation application. This is done so that time and material costs are not put at jeopardy. This is the last opportunity to correct issues, and testing accuracy is critical to ensure that specifications are met.

Three-Phase winding assembled with the final core Picture from LinkedIn – Manuel Bolotinha – Dec 2017

Megger Valley Forge Corporate Centre 2621 Van Buren Avenue Norristown PA 19403, United States

Solution

The TTRU3 provides accuracy equal to the best competitors on the market. Where our previous TTR units were satisfactory for routine testing, the new TTRU3 provides guaranteed accuracy of $\pm 0.05\%$. The results are repeatable by any user, with any line input voltage, and under varying temperature conditions – which can reach 45°C in many transformer factory floors in hot climates.

The TTRU3 provides the fastest 3 phase ratio results on the market. This makes assembly line testing of smaller transformers both accurate and efficient. With the TTRU3, test time is reduced by more than 66% (from 40 seconds to 10 seconds), allowing for lower manufacturing cost and high quality transformers.

Megger Valley Forge Corporate Centre 2621 Van Buren Avenue Norristown PA 19403, United States

Final Test and Commissioning

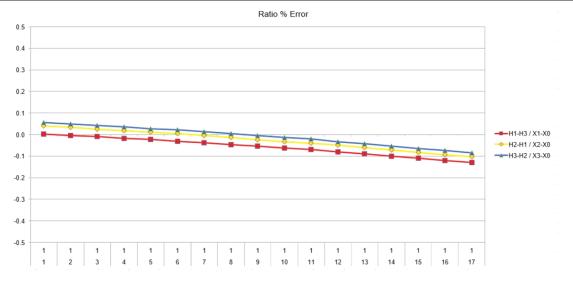
Problem

When completing a transformer, manufacturers must report results to their customers. There is a need for the instruments used to provide both accurate results as well as a professional report. Only instruments which provide this ability are considered, and until recently, Megger TTRs were not considered.

Solution

The quality of the transformer construction is reflected in test results, and the TTRU3 delivers results in both the level of accuracy, and the look of the report provided. Reports are available as PDF or as CSV files, allowing customers to choose a format, or integrate our results into their database and reporting formats.

Megger Valley Forge Corporate Centre 2621 Van Buren Avenue Norristown PA 19403, United States


TTRU3 Application Note

Factory Ratio Testing of Power Transformer

Test & Asset De	etails											·				
Asset ID		Job #				0	1		TTR SN		3613-LF		[
Substation			Date of Test					Tester				Tu	rns RatioAl	lowed Erro	r %	
Position			Date of R	eport												0.5
Transformer Te	st Conditions															
Ambient Temp		20°C				Weather		Cloudy				Oil Temp		20°C		
									ice			Winding				
		0%				Reason		Acceptar					Dyn1	X2	1	
		0%				Reason		Acceptar				H2		×2		
Transfomer Nan		0%	Weight		Olb	Reason	Oil Volum							,×2 Q		
Humidity Transfomer Nar MFR Serial #		0%	Weight Class		Olb	Reason	Oil Volum Coolant		1L OIL & WAT	TER 1			Dyn1			
Transfomer Nar MFR Serial #		0%				Reason		ne	1L	TER				9		
Transfomer Nar MFR Serial # Year		0%	Class	ign	AN		Coolant	ne	1L OIL & WAT	TER			Dyn1	9		
Transfomer Nar MFR Serial # Year	neplate	0%	Class BIL	ign	AN OkV		Coolant	ne	1L OIL & WAT	TER			Dyn1 X1 O	9		
Transfomer Nar	neplate Sealed Volt	age	Class BIL Core Desi		AN OkV Unknowr		Coolant Impedanc	ne ce	1L OIL & WAT 0%		н		Dyn1 X1 O	×0 ×0 ×3		/oltage
Transfomer Nar MFR Serial # Year	neplate Sealed		Class BIL Core Desi	ign «VA	AN OkV		Coolant Impedanc Non	ne ce ninal	1L OIL & WAT 0% Tap Cha	anger			Dyn1 X1 O H3 First Tap	X0 X0 X3 p Voltage	Last Tap \	
Transfomer Nar MFR Serial # Year	neplate Sealed Volt	age	Class BIL Core Desi		AN OkV Unknowr		Coolant Impedanc Non	ne ce	1L OIL & WAT 0%	anger	н		Dyn1 X1 O H3 First Tap	×0 ×0 ×3		

Turns R	atio																
							H1-H3	/ X1-X0			H2-H1	/ X2-X0			H3-H2	/ X3-X0	
	Тар	Voltage		Test V	Calc TTR	ctual Ratio	% Error	LovernA	bace(Deg)	ctual Patio	% Error	l excmA	bace(Deg)	ctual Ratio	% Error	I excmA	hase(Deg)
Pri	Sec	Pri	Sec	lest v	Calc TTK		% Error	l excmA	hase(Deg)		70 Error	Texcina	mase(Deg)		70 EITOF	TexcmA	mase(Deg)
1	1	177100	22800	250	7.7675	7.7678	0.00	0.022	0.009	7.7707	0.04	0.022	-0.022	7.7719	0.06	0.024	0.002
2	1	175088	22800	250	7.6793	7.6790	0.00	0.022	0.011	7.6820	0.03	0.021	-0.018	7.6830	0.05	0.024	0.003
3	1	173075	22800	250	7.5910	7.5903	-0.01	0.022	0.014	7.5930	0.03	0.021	-0.017	7.5942	0.04	0.024	0.005
4	1	171063	22800	250	7.5028	7.5015	-0.02	0.022	0.017	7.5042	0.02	0.021	-0.016	7.5054	0.04	0.024	0.007
5	1	169050	22800	250	7.4145	7.4128	-0.02	0.022	0.017	7.4153	0.01	0.021	-0.013	7.4165	0.03	0.024	0.010
6	1	167038	22800	250	7.3262	7.3240	-0.03	0.022	0.021	7.3265	0.00	0.021	-0.012	7.3278	0.02	0.024	0.013
7	1	165025	22800	250	7.2379	7.2352	-0.04	0.022	0.022	7.2377	0.00	0.021	-0.009	7.2390	0.01	0.024	0.014
8	1	163013	22800	250	7.1497	7.1464	-0.05	0.021	0.024	7.1488	-0.01	0.020	-0.007	7.1501	0.00	0.024	0.018
9	1	161000	22800	250	7.0614	7.0577	-0.05	0.021	0.028	7.0597	-0.02	0.021	-0.004	7.0611	0.00	0.024	0.019
10	1	158988	22800	250	6.9732	6.9689	-0.06	0.021	0.028	6.9709	-0.03	0.020	-0.002	6.9722	-0.01	0.023	0.024
11	1	156975	22800	250	6.8849	6.8801	-0.07	0.021	0.036	6.8822	-0.04	0.020	0.004	6.8834	-0.02	0.023	0.032
12	1	154963	22800	250	6.7966	6.7912	-0.08	0.021	0.037	6.7932	-0.05	0.020	0.007	6.7944	-0.03	0.023	0.034
13	1	152950	22800	250	6.7083	6.7024	-0.09	0.021	0.042	6.7043	-0.06	0.020	0.009	6.7055	-0.04	0.023	0.039
14	1	150938	22800	250	6.6201	6.6135	-0.10	0.020	0.042	6.6154	-0.07	0.019	0.013	6.6166	-0.05	0.023	0.043
15	1	148925	22800	250	6.5318	6.5247	-0.11	0.021	0.048	6.5264	-0.08	0.020	0.016	6.5277	-0.06	0.023	0.047
16	1	146913	22800	250	6.4436	6.4358	-0.12	0.020	0.048	6.4375	-0.09	0.019	0.022	6.4388	-0.07	0.023	0.052
17	1	144900	22800	250	6.3553	6.3471	-0.13	0.020	0.053	6.3488	-0.10	0.019	0.026	6.3499	-0.09	0.022	0.058

Megger Valley Forge Corporate Centre 2621 Van Buren Avenue Norristown PA 19403, United States

+1 610 676 8500

www.megger.com